
Application Security

Joseph Yoder

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
j-yoder@uiuc.edu

Jeffrey Barcalow

Reuters Information Technology
1400 Kensington

Oak Brook, IL 60523
jeff.barcalow@reuters.com

Abstract
When the time arrives to deploy an application that needs security, it becomes apparent that adding security
is much harder than just adding a password protected login screen. This paper contains a collection of
patterns for application security. Six patterns are presented in this paper: 1) Secure Access Layer, 2) Single
Access Point, 3) Check Point, 4) Roles, 5) Session, and 6) Limited View. Secure Access Layer provides a
communication interface for developers and provides a means for applications to use the security of the
systems on which they are built. Single Access Point permits entry into the application through one single
point. Check Point gives the developer a way to handle different types of security breaches without being
too harsh on users who are just making mistakes. Groups of users have different Roles that define what
they can and can not do. The global information about the user is distributed throughout the application via
a Session. Finally, users are only presented with legal options through a Limited View. These six patterns
work together to provide a security framework for building applications.

2

Introduction
Systems are often developed without security in mind. This omission is primarily because the application
programmer is focusing more on trying to learn the domain rather than worrying about how to protect the
system. In these cases, security is usually the last thing an application programmer is worried about. When
the time arrives to deploy these systems, it quickly becomes apparent that adding security is much harder
than just adding a password protected login screen. People have been writing patterns for quite a few years
now and to the surprise of the authors, we could not find anything written about the patterns that arise when
addressing security issues.

In corporate environments where security is a priority, detailed security documents are written describing
physical, operating system, network, and application security. The six patterns presented in this paper can
be applied when developing security for application component of the security equation. They are not
meant to be a complete set of security patterns. Rather they are meant to be the start of a collection of
patterns that will help developers address security issues when developing applications. Both authors have
had the experience of refactoring a system to make it meet corporate security requirements after the system
was basically developed (The Caterpillar/NCSA Financial Model Framework [Yoder]). From this
experience, we found many patterns that are used in developing security systems and outline them here.

Users should not be allowed to get through a back door that allows them to view or edit sensitive data.
Single Access Point helps solve this problem by limiting application entry to one single point. Check Point
handles different types of security breaches while making the punishment appropriate for the security
violation. Groups of users have different Roles that define what they can and can not do. The global
information about the user is distributed throughout the application via a Session. Users are only presented
with legal options through a Limited View. Finally, any application should have a Secure Access Layer for
communicating with external systems securely. This layer helps keep the application’s code independent
of the external interfaces.

The pattern catalog in Table 1 outlines the application security patterns discussed in this paper. It lists each
pattern’s name with the problem that the pattern solves. These patterns collaborate to provide the necessary
security within an application. They are tied together in the “Putting It All Together” section presented at
the end of this paper.

Pattern Name Problem

Single Access Point Providing a security module and a way to log into the system.

Check Point Organizing security checks and their repercussions.

Roles Organizing users with similar security privileges.

Session Localizing global information in a multi-user environment.

Limited View Allowing users to only see what they have access to.

Secure Access Layer Integrating application security with low level security.

Table 1 - Pattern Catalog

This paper does not discuss the patterns or issues dealing with low-level security on which our Secure
Access Layer pattern is built. The low-level security patterns not discussed would deal with issues such as
encryption, firewalls, kerberos, and AFS. Many good sources of low-level security issues and techniques
are available. The International Cryptographic Software Web Pages [ICSP] and the Applied Cryptography
book [Schneier] are very good references for more details on these issues.

3

Single Access Point

Alias:
Login Window
One Way In

Motivation:
Providing security for an application that communicates with networking, operating systems, databases,
and other infrastructure systems can be very complex. The application will need a way to log a user
into the system and a means for integrating with all of the available security modules from these
systems. Sometimes a user may need to be authenticated on several systems. Additionally, some of the
user-supplied information may need to be kept for later processing.

Problem:
A security model is difficult to validate when it has multiple “front doors,” “back doors,” and “side
doors” for entering the application.

Forces:
• Having multiple ways to open an application makes it easier to use in different environments.
• An application may actually be a composite of several applications that all need to be secure.
• Different login windows or procedures could have duplicate code.
• Multiple entry points to an application can be customized to only collect information needed at that

entry point.
• A single entry point may need to collect all of the user information that is needed for the entire

application. This information will have to be kept in a global location.

Solution:
Set up only one way to get into the system, and if necessary, create a mechanism for deciding which
sub-applications to launch. The typical solution is a login screen for collecting basic information about
the user, such as username, password, and possibly some configuration settings. Check Point is then
used for verifying this information, and a Session is then created based upon the configuration settings
and the user’s access privileges. When opening up any sub-applications the requests are forwarded
through the Check Point for handling any problems.

The “Putting It All Together” section describes the initialization process in more detail. The important
idea here is that Single Access Point provides a convenient place to encapsulate the initialization
process, making it easier to validate that the initial security steps are performed correctly.

Consequences:
One advantage of Single Access Point is that it provides a place where everything within the application
can be setup properly. This single location can help ensure all values are initialized correctly,
application setup is performed correctly, and the application does not reach an invalid state.

Control flow is simpler since everything must go through a single point of responsibility in order for
access to be allowed. Single Access Point is only as secure as any steps leading to it.

The application cannot have multiple entry points.

Related Patterns:
• Single Access Point validates the user’s login information through a Check Point and uses that

information to initialize the user’s Roles and Session.

4

 Known Uses:
• UNIX and Windows NT use Single Access Point for logging into the system. These systems also

create the necessary Roles for the current Session. Windows 95, however, does not use Single
Access Point, because it allows any user to override the login screen and have access to all files on
the system.

• Most application login screens are a Single Access Point into programs because they are the only
way to startup and run the given application.

• The Caterpillar/NCSA Financial Model Framework [Yoder] has an FMLogin class which provides
both Single Access Point and Check Point.

• Single Access Point has many non-security parallels:
� Applications that launch only one way, ensuring a correct initial state.
� Single creational methods provide for only one way to create a class. For example, Points in

VisualWorks Smalltalk guides you to creating valid points by providing a couple of creational
methods that ensure the Object is initialized correctly. Kent Beck’s describes Constructor
Methods as a single way to create well-formed instances of objects [Beck 97]. These are put
into a single “instance creation” protocol.

� Constructor Parameter Method [Beck 97] initializes all instance variables through a single
method.

� Concurrent programs can encapsulate non-concurrent objects inside an object designed for
concurrency. Synchronization is enforced through this Single Access Point. Pass-Through
Host design [Lea 97] deals with synchronization by forwarding all appropriate methods to the
Helper using unsynchronized methods. This works because the methods are stateless with
respect to the Host class.

5

 Check Point

Alias:
 Access Verification
 Holding off hackers
 Three Strikes and You’re Out
 Proposition 184 – California’s Three Strikes Rule
 Above the Legal Limit
 Validation and Retribution
 Authentication and Penalization
 Make the Punishment Fit the Crime

 Motivation:
 The goal of application security is to keep unwanted perpetrators from gaining access to application
areas where they can find confidential information or can corrupt data. Single Access Point can help
solve this problem by making a single point to enter an application. At the Single Access Point, the
checks must be made to verify that a user is permissible. Unfortunately, these could make getting into
the application more difficult for legitimate users. A user’s most common mistake is entering the
wrong password. While users may often mistype their passwords, frequent, consecutive failures
without success could indicate that someone is trying to guess a password and break into the
application. Application security must allow occasional mistakes while doing its best to keep a hacker
out. A developer could design many checks to determine if a user is trying to break into the system or
is just making common mistakes. These checks could easily become complicated and difficult to
manage, so they need to be organized

 Problem:
 An application needs to be secure from break-in attempts, and appropriate actions should be taken when
such attempts occur. Different organizations have different security policies and there needs to be a
way to incorporate these policies into the system independently from the design of the application.

 Forces:
• Users make mistakes and should not be punished too harshly for mistakes.
• If too many mistakes are made, some type of action needs to be taken.
• Different actions need to be taken depending on the severity of the mistake.
• Having lots of error checking code all over your application can make it difficult to debug and

maintain.

 Solution:
 Create an object that encapsulates the algorithm for the company’s security policy. This object usually
keeps track of how many exceptions happen and also decides the severity of the violation and what
action needs to be taken when this violation happens.

 The implementation of Check Point combines several patterns. Single Access Point is used to ensure
that security checks are performed correctly and that no security checks are skipped. The Check Point
algorithm is a Strategy [GHJV 95]. This Strategy knows what security checks are performed, the order
in which checks should be performed, and how to handle failures. Different Strategy objects could be
plugged in depending on the desired level of security. The authors have found the Strategy quality of
Check Point to be useful because security can be turned off in a development situation and can be
turned back on for testing and deployment.

 A Check Point implementation typically has three parts. The first part is the algorithm. It performs
security checks one at a time, only proceeding to the next check when the current check has passed.

6

 The second part includes the failure actions. Depending on the security violation or error, different
types of actions may be taken. So, failure actions can be broken down by level of severity. The
simplest action is to return a warning or error message to the user. If the error is non-critical, security
checking could be continued or could be restarted. The second level of severity could force an abort of
the login process or quit the program. The highest level of severity could lockout a machine or
username. This disabling feature could be implemented by having a secured database table or file that
indicates if each machine and username is active. Normally, an administrator would have to reset the
username and/or machine access. Unfortunately this could cause problems when a legitimate user tries
to login later, so if the violation is not extremely critical, the username and machine disabled flags could
be timestamped so they can automatically be turned back on after an hour or so. All security failures
could also be logged.

 Sometimes, the level of severity of a security violation depends on how many times the violation occurs
in a row. A user who types a password incorrectly once or twice should not be punished too harshly.
Three or four consecutive failures could indicate a hacker is trying to guess a password. To handle this
situation, the Strategy can include counters to keep track of the frequency of security violations. The
counters can be used to parameterize the algorithm.

While it may be desirable to try to make a reusable security module, that goal is difficult when security
requirements vary between implementations within a framework. It might be possible to create a
library of pluggable security components and a framework for incorporating some of the basic security
requirements into your application. However, the algorithm itself will almost always be overridden and
it will need to be so flexible that it is hard for the authors to see a way to generalize this. The best
approach might be to create configuration options that allow small parts of the algorithm to be turned on
and off.

Example:
Figure 1 summarizes the Check Point algorithm for the Caterpillar/NCSA Financial Model. The
process starts with a Single Access Point at the login window. The password check and failure loop has
three counters. One keeps track of the number of failures since the application has been loaded. The
other two counters keep track of consecutive failures by that user and by someone at that terminal,

Halt

Login window

Password
Check

Increase current fail count
Increase user fail count
Increase machine fail

* These other checks could include: Is the machine legal? Is the machine disabled? Is
user’s account disabled? Does user have valid role? Has the user’s password expired?

Too many
 failures?

Clear failures

Load session data
based on role

Disable
Other Checks

*

Figure 1 – An Example of a Check Point Algorithm

7

which could be spread out over several application startups. When too many consecutive failures occur,
the user and/or terminal is disabled for a fixed duration of time or until the administrator resets the
account or terminal. Password verification is performed by the database through the Secure Access
Layer. Once a correct password has been entered, several other checks are applied because while a
login might be allowed for the database, the login might not be legal for the application. Password
expiration is also implemented after these checks. Notice that while the consecutive failure error
disables the account and/or machine, refusing to enter a new password simply aborts the application.
When Check Point is complete, it configures the Session based on a role.

Consequences:
Check Point is a critical security location where security must be absolutely enforced. Check Point
localizes the security model that needs to be certified.

Check Point can be a complex algorithm. While this complexity may be unavoidable, at least it is
isolated in one location, making the security algorithm more pluggable.

Some security checks cannot be performed at startup, so Check Point must be accessible from those
parts of the application which need those checks. Some information needed for these security checks
must be kept until needed later. This information, which could include username, password, and Roles,
can be stored in a Session.

 Related Patterns:
• The Check Point algorithm uses a Strategy for application security.
• Single Access Point is used to insure that Check Point gets initialized correctly and that none of the

security checks are skipped.
• Roles are often used for Check Point’s security checks and could be loaded by Check Point.
• Check Point usually configures a Session and stores the necessary security information in it.

 Known Uses:
• The login process for an ftp server uses Check Point. Depending on the server’s configuration

files, anonymous logins may or may not be allowed. For anonymous logins, a valid email is
sometimes required.

• The Caterpillar/NCSA Financial Model Framework [Yoder] uses Check Point to check passwords,
Roles, and machines. The example above summarizes its implementation.

• Xauth provides Check Point that X-windows applications can use for securely communicating
clients to servers. This is done through the use of a cookie.

8

 Roles

Alias:
 Groups
 Projects
 Profiles
 Jobs
 User Types

 Motivation:
 Security can be more complicated in multi-user applications. Users have different areas of the
application that they can see, can change, and “own.” When the number of users is large, the security
permissions for users often fall into several categories. These categories could correspond to a user’s
job titles, experience, or division. Meanwhile, the administrator must struggle with managing the
security profiles for a large number of users. The administrator needs an easier way to manage
permissions.

 Problem:
 Users have different security profiles, but some profiles are similar. The user base is large enough or
the security profiles are complex enough that managing user-privilege relationships has become
difficult.

 Forces:
• With a large number of users it is hard to customize security for each person.
• Groups of users usually share similar security profiles.
• A user may need to have an individual security profile.
• Security profiles may overlap.
• A user’s security profile may change over time.

 Solution:
Create one or more role objects that define the permissions and access rights that groups of users have.

When a user logs in, he is assigned a set of privileges that specify what data is accessible and which
parts of the application can be activated. From an administrator's standpoint this user-privilege
relationship is n-n, making it difficult to manage.

This pattern introduces a level of indirection (the Role). This level of indirection splits the user-
privilege relationship into user-role and role-privilege relationships. While these two new relationships
are still n-n, selecting appropriate Roles can reduce the total number of relationships.

Sometimes, a subset of the original user-privilege relationship also must be maintained to allow each
user to have private privileges. Roles should only be used when the extra level of indirection provides a
conceptual or manageability advantage over the direct user-privilege relationship.

 Introducing Roles creates two new relationships that must be managed: user-role and role-privilege.
Sometimes, a subset of the original user-privilege relationship must also be maintained to allow each
user to have private privileges. Roles should only be used when the extra level of indirection provides a
conceptual or manageability advantage over the direct user-privilege relationship.

 For the role-privilege relationship, role objects could know what privileges to which they have access.
The converse implementation would require every privilege call to check its roles before returning a
value or performing an operation. This option spreads security code throughout the application, so it
should be avoidable. The preferred implementation, defining privileges within the role objects, is an
example of the Limited View pattern (described latter in this paper).

9

 While assigning each user a single Role may simplify organization, in reality a user could be both an
accountant and a manager. An "Accountant Manager" Role could be created but that is not a
generalized solution and could make it so that many Roles are created for all of the possibilities. A
better solution is to make the user object's Role variable store a set of Roles. While this approach
makes it easier to map a user to the appropriate set of Roles, from an administrative standpoint, it makes
privilege lookups more complicated inside the application. The role-privilege relationship must be
checked for each of the user's Roles, meaning simple comparisons must be replaced by for-loop
comparisons.

 A variation of this pattern is to allow a user to have several types of roles. For example, a user object
could have a set of roles describing its editing privileges and another set of roles describing its viewing
privileges.

 If roles overlap heavily, it may make sense to build a hierarchy of role types and sub-role types. With a
role hierarchy, role-security checks are almost identical to type checking interfaces. A user would be
the variable to be type-checked. The user’s roles would be the interfaces for the object. The security
privileges are analogous to the methods and instances variable accesses which have to be type-checked.

Consequences:
Instead of managing user-privilege relationships, the administrator will manage the user-role and role-
privilege relationships.

Roles can be a convenient organizational technique for administrators, but they add an extra layer of
complexity for developers.

Even if Roles are used, a username-privilege relationship is still needed to make information private to
one user.

Administrative tasks can be simplified by using Roles. For example, all new employees could be
allowed to view and edit a training database, but only view the real database. A "training" Role could
be created for these permissions. Then, any new employee account will only have to be given a training
Role instead of a potentially large set of permission options.

 Related Patterns:
• Dealing with Roles [Fowler 97-2] provides a whole pattern language discussing roles with more

specific implementation details.
• Check Point is used when a user tries to perform an operation without having a role with the proper

permissions.
• Roles could be used to determine the scope of a Limited View.
• Roles could be used to select a Strategy.

 Known Uses:
• UNIX uses three classifications for secure access to files and directories. The middle classification

is “group,” which is an example of Roles. The user-role relationship is stored in /etc/group and is
sorted by Roles. The file system stores the role-privilege relationship.

• Some web servers use .htaccess and .htgroups files which define groups of users (Roles) that can
access certain areas of a web site.

• Oracle has a Roles feature for defining security privileges. User-role and role-privilege
relationships are stored in tables.

• In the GemStone OODB data is stored in a segment. GemStone treats segments analogously to the
way UNIX treats files. Users in GemStone can have one or more groups (Roles), and each
segment has read and write privileges defined for all users, a set of groups, and the owner. Since a
segment can have a set of groups, it is a little more powerful than UNIX with respect to groups.

• Office 97’s Help system is an example of using roles for a non-security issue. The animated
paperclip help character can be configured to give from no help (expert) to frequent, unrequested
help (beginner). This configuration is the current user’s role.

10

 Session

Alias:
 Localized Globals
 Stuff that everyone should know

 Motivation:
 When an application needs to keep one copy of some information around, it could use the Singleton
pattern [GHJV 95]. The Singleton is usually stored in a single global location, such as a class variable.
Unfortunately, a Singleton can be difficult to use when an application is multi-threaded, multi-user, or
distributed. In some situations a true Singleton may be needed. In other situations, each thread or each
distributed process can be viewed as an independent application, each needing its own private
Singleton. But when the applications share a common global environment, the single global location
cannot be shared. A mechanism is needed to allow multiple Singletons, one for each application.

 Problem:
 Many objects need access to shared values, but the values are not unique throughout the system.

 Forces:
• Referencing global variables keeps code clean and straightforward.
• Each object may only need access to some of the shared values.
• Which values are shared could change over time.
• If multiple applications are run simultaneously, they should not share the same values.
• Object creational interfaces are complicated when each object requires a set of shared values.
• While an object may not need certain values, it may later create an object that needs those values.

 Solution:
 Create a Session object, which holds all of the variables that need to be shared by many objects.
Depending on the structure of the class hierarchy, an instance variable for the Session could be added to
a superclass common to every class that needs the Session. Many times, especially when extending and
building on existing frameworks, the common superclass approach will not work. Then, an instance
variable needs to be added to every class that needs access to the Session.

 All of the objects that share the same Session have a common scope. This scope is like the
environments used by a compiler to perform variable lookups. The principle differences are that the
Session’s scope was created by the application and that lookups are performed at runtime by the
application.

 Since many objects hold a reference to the Session, it is a great place to put the current State [GHJV
95] of the application. The State pattern does not have to be implemented inside of the Session for
general security purposes, however. It is important to note that the user should not be allowed access to
any secure data that may be held within a Session such as passwords and protections.

Consequence
The Session object provides a common interface for all components to access important variables.

One problem with this solution is that even though an object may not need a Session, the object may
later create an object that needs the Session. When this is the case, the first object must still keep a
reference to the Session so it can pass it to the new object. Sometimes, it may seem as if every object
has a Session. The proliferation of Session instance variables throughout the design is an unfortunate,
but necessary, consequence of the Session pattern.

11

Adding Session late in the development process can be difficult. Every reference to a Singleton must
be changed. The authors have experience retrofitting Session in place of Singleton and can attest that
this can very tedious when several Singletons are spread among several classes.

When many values are stored in the Session, it will need some organizational structure. While some
organization may make it possible to breakdown a Session to reduce coupling, splitting the session
requires a detailed analysis of which components need which subsets of values.

 Related Patterns:
• Session is an alternative to a Singleton [GHJV 95] in a multi-threaded, multi-user, or distributed

environment.
• Single Access Point validates a user through Check Point. It gets a Session in return if the user

validation is acceptable.
• A Session is a convenient place to implement the State pattern.
• Two unrelated patterns are Type-Safe Session [Pryce 97] and Sessions [Lea]. Type-Safe Session

concentrates on client/server communication channels while Lea’s Sessions discusses the
beginning, middle, and end actions performed on resources. This paper’s Session pattern, on the
other hand, focuses on separating data that cannot go in a Singleton because of a shared
environment.

 Known Uses:
• For VisualWorks, the Lens framework for Oracle and GemBuilder for GemStone have

OracleSession and GbsSession classes respectively. Each keeps information such as the
transaction state and the database connection. The Sessions are then referenced by any object
within the same database context.

• The Caterpillar/NCSA Financial Model Framework has a FMState class [Yoder]. An FMState
object serves as a Session, while keeping a Limited View of the data, the current product/family
selection, and the state of the system. Most of the classes in the Financial Model keep a reference
to an FMState.

• VisualWorks has projects that can be used to separate two or more change sets. While information
about window placement is also stored in each project, image code is shared among all of the
projects. So, projects could be considered non-secured sessions.

12

Limited View

Alias:
Blinders
Invisible Road Blocks
Hiding the cookie jars

Motivation:
Graphical applications often provide many ways to view data. Users can dynamically choose which
view on which data they want. When an application has these multiple views, the developer must
always be concerned with which operations are legal given the current state of the application and the
privileges of the user. The conditional code for determining whether an operation is legal can be very
complicated and difficult to test. By limiting the view to what the user has access, conditional code can
be ignored.

Problem:
Users should not be allowed to perform illegal operations.

Forces:
• Users may be confused when some options are either not present or disabled.
• If options pop in and out depending upon Roles, the user may get confused on what is available.
• Users should not be able to see operations they cannot do.
• Users should not view data they do not have permissions for.
• Users do not like being told what they cannot do.
• Users get annoyed with security and access violation messages.
• User validation can be easier when you limit the user to see only what they can access.

Solution:
Only let the users see what they have access to. Only give them selections and menus to options that
their current access-privileges permit. When the application starts up, the user will have some Role or
the application will default to some view. Based upon this Role, the system will only allow the user to
select items that the current Role allows. If the user can not edit the data, then do not present the user
with these options through menus or buttons.

A Limited View is controlled in two ways. First, a Limited View configures which selections choices are
possible for the user based upon the current set of roles. This makes it so that the user only selects data
they are allowed to see. Second, a Limited View takes the current session with the user’s information
including the Roles, applies this with the current state of the application, and dynamically builds a GUI
that limits the view based upon these attributes.

The first approach allows users to see different lists and data values depending upon their current role.
This is primarily used when a user is presented with a selection list for choosing items to view. The
GUI presented to the user is static, however the values listed on the GUI changes according to the
current Role of the user. An individual user may have many Roles and may have to choose a Role
while running the application. Whenever a user changes their Role(s), the Limited View will change.

For example, consider a financial application in which a manager has access to a limit set of products.
When making a product selection inside a Limited View, the application will only present products that
the manager is allowed to see. Thus, when the user goes to select the desired products available, the
manager cannot get an “access denied” error.

When using the Limited View inside a Session with Role information, it also limits the view based upon
the current state of the application. The actual GUI that the user sees on the screen is dynamically
created. For example, a Limited View might add buttons or menus for editing, if the user’s Role allows

13

for editing. Alternatively, edit options might always be disable, but they could be dynamically disabled
depending upon the Role of the user and the current state of the application. The Strategy pattern could
be used here to plug in different GUIs depending upon the desired results.

By limiting users to only viewing the data to which they have access and to only showing them the
options that are available, the user is knows of what options are currently legal. For example, in
Microsoft Word, when there are no documents open, the file menu does not show the option of saving a
file since there are no files to save. Similarly, when previewing an internet document, the user does not
have any options available to edit the document.

There are many possible implementations to Limited Views. GUIs can be dynamically created through
Composites and Builders [GHJV 95]. Alternatively, the State pattern can be used by creating different
classes that represent the different Limited Views. A Strategy can be used for choosing the appropriate
State.

Example:
One example of a Limited View can be seen in the Selection Box example in Figure 2. Here, the user is
only provided a list of the products they can view or edit. While other products are available in the
system, those products are not shown because this user does not have access rights to them. For
example, if a GUI provides a list of detailed transactions, a Limited View on this would only show a list
of transactions for beans, corn, and hay for this user since that is all they are allowed to use.

Another example can be seen in Figure 3 and Figure 4. Note that Figure 3 does not show a button for
changing the values in the database, while in Figure 4 has that option. The view limits the ability for
editing in Figure 3 since the user does not have the authority for editing the detailed income. In Figure
4, the view is limited by disabling some of the buttons. The buttons are disabled because the user has
not changed any transactions and there are no values to accept or commit to the database.

Figure 2 - Limited View on Selection

14

Both the disable and the hide approaches to limiting a view have tradeoffs that designers make
depending upon the overall needs of the application. If the primary user will not be able to edit values,
the Limited View will probably want to hide editing buttons. Whereas if the primary user will have
editing functions, the Limited View will probably want to simply disable the buttons and menus as
needed.

Figure 3 - Limited View on non-editable transactions

Figure 4 - Limited View on editable transactions

15

Consequences:
By only allowing the user to see and edit what they can access, the developer doesn’t have to worry
about verifying the legitimacy of the data the user is attempting to access. The user will only be
permitted to select items that they can view. Similarly, if the user can edit values, the editing menus
and buttons will only be presented when the user has editing capabilities on the presented data.

One problem with this pattern is that it can be frustrating for users to see options appear and disappear
on the screen. For example, if when viewing one set of data, the editing button is there and when
viewing another set of data, it disappears, the user will be wondering if something is wrong with the
application or why the data isn’t available.

Similarly, if the user can view two products of data but only edit one, she or he may wonder why the
editing options are not available when viewing both products at the same time.

Retrofitting a Limited View into an existing system can be difficult because the data for the Limited View,
as well as the code for selecting it, could be spread throughout the system.

Related Patterns:
• A Session may have a Limited View of data that it distributes throughout the application.
• Roles are sometimes used to configure a Limited View.
• State with Strategy can be used to implement a Limited View.
• Composites and Builders can be used to implement a Limited View.

 Known Uses:
• The Caterpillar/NCSA Financial Model Framework [Yoder] has a Limited View on the data by only

allowing the user to see products for which they have access rights. This framework also provides
Limited View in user interfaces by changing editing view screens based upon the Roles of the user.

• Firewalls provide Limited Views on data by filtering network data and making it available only to
some systems.

• Hidden files and directories, which provided by most operating systems, are a form of a Limited
View.

• Limited View has many non-security parallels. Netscape Communicator and Microsoft Office
change their user interface depending upon what the user may be editing or viewing. This is
commonly done through the use of context sensitive menus or enabling buttons. For example, the
menus available while editing charts in Excel is quite different from those provided for editing a
spreadsheet. Also, if no documents are opened, the “Save” and “Save As” menu items are not
available in the “File” menu.

16

Secure Access Layer

Alias:
Using Low-level security
Using Non-application security
Only as strong as the weakest link

Motivation:
Most applications tend to be integrated with many other systems. The places where system integration
occurs can be the weakest security points and the most susceptible to break-ins. If the developer is
forced to put checks into the application wherever the applications communicates with these systems,
then the code will be very convoluted and abstraction will be difficult. An application that is built on an
insecure foundation will be insecure. In other words, it doesn’t do any good to bar your windows when
you leave your back door is wide open.

Problem:
Application security will be insecure if it is not properly integrated with the security of the external
systems it uses.

Forces:
• Application development should not have to be developed with operating system, networking, and

database specifics in mind.
• Putting low-level security code throughout the whole application makes it difficult to debug,

modify, and port to other systems.
• Even if the application is secure, a good hacker could find a way to intercept messages or go under

the hood to access sensitive data.
• Interfacing with external security systems is sometimes difficult.
• An external system may not have sufficient security, and implementing the needed security may

not be possible or feasible.

Solution:
Build your application security around existing operating system, networking, and database security
mechanisms. If they do not exist, then build your own lower-level security mechanism. On top of the
lower-level security, build a secure access layer for communicating in and out of the program.

Usually an application communicates with many other pre-existing systems. For example, a financial
application on a Windows NT client might use an Oracle database on a remote server. Given that most
systems already provide a security interface, develop a layer in your application that encapsulates the
interfaces for securely accessing these external systems. All communication between the application
and the outside world will be routed through this secure layer.

This layer may have many different protocols depending upon the types of communications that need to
be done. For example, this layer might have a protocol for accessing secure data in an Oracle database
and another protocol for communicating securely with Netscape server through the Secure Sockets
Layer (SSL) [Netscape]. The crux of this pattern is to componentize each of these external protocols so
they can be more easily secured. The architecture for different Secure Access Layers could vary
greatly. However, the components’ organization and integration is beyond the scope of this pattern.

By creating a Secure Access Layer with a standard set of protocols for communicating with the outside
world, an application developer can localize these external interfaces and focus primarily on
applications development. Communicate in and out of the application will pass through the protocols
provided by this layer.

17

Consequences:
One advantage for using a Secure Access Layer is portability. If the application later needs to
communicate with Sybase rather than Oracle, then the access to the database is localized and only needs
to be changed in one place. QueryObjects [Brant & Yoder 96] uses this approach by having all
accesses to the database go through the QueryDataManager, which is built on top of the
LensSession [PP 95]. The LensSession can map to either Oracle or Sybase. Therefore the
application developer does not need to be concerned with either choice or future changes.

On the other hand, this assumes a convenient abstraction is possible. LensSession does not support
Microsoft Access, so QueryDataManager cannot be used with a Microsoft Access database. Secure
Access Layer, however, provides a location for a more general database abstraction. There have been
third party drivers developed for ODBC that can communicate with Microsoft Access. By using the
Secure Access Layer, it is easy to extend your application to use the ODBC protocol to allow your
application to communicate with any database that supports ODBC.

Different systems that your application may need to integrate with use different security protocols and
schemes for accessing them. This can make it difficult to develop a Secure Access Layer that works for
all integrated systems, and it also may cause the developer to keep track of information that many
systems do not need.

It can be very hard to retrofit a Secure Access Layer into an application which already has security
access code spread throughout.

Related Patterns:
• Secure Access Layer is part of a layered architecture. Layers [BMRSS 96] discusses the details of

building layered architectures.
• Layered Architecture for Information Systems [Fowlers 97-1] discusses implementation details that

can be applied when developing layered systems.

 Known Uses:
• Secure Shell [SSH] includes secure protocols for communicating in X11 sessions and can use RSA

encryption through TCP/IP connections.
• SSL (Netscape Server) provides a Secure Access Layer that web clients can use for insuring secure

communication.
• Oracle provides its own Secure Access Layer that applications can use for communicating with it.
• CORBA Security Services [OMG] specifies how to authenticate, administer, audit and maintain

security throughout a CORBA distributed object system. Any CORBA application’s Secure
Access Layer would communicate with CORBA’s Security Service.

• The Caterpillar/NCSA Financial Model Framework [Yoder] goes through a Secure Access Layer
provided by the LensSession in ParcPlace’s VisualWorks Smalltalk [PP 95].

18

Putting It All Together
Now that you have seen all of the patterns, you might be asking, “how do I fit it all together?” All of these
patterns collaborate as an application security module and provide a mechanism for communicating with
the outside world. Figure 5 is a map that shows how these patterns work together.

When a user logs into the system, Single Access Point takes the user’s information. Single Access Point
uses Check Point, which in turn interacts with the Secure Access Layer, to validate the user’s information.
After validating the user’s information, Check Point looks up the users Roles and creates a Session. This
Session has a reference to the role for future use and defines the Limited View of the data.

Check Point will be used by other application components when they need secure operations that can not be
performed at startup. Session will be referenced by any part of the system which needs Roles, state, or a
Limited View of the data. User Interfaces with Limited Views will be created using the Session.

The example in Figure 6 shows the steps that are taken when a user successfully logs into the system. The
login screen is where the Single Access Point usually happens. This single point of control initializes the
system by going through Check Point. Check Point validates the user and creates a set of Roles for the
user. The validation of the user is done through the Secure Access Layer. Roles are then passed to a
Session class to create the current Session that will be used by the application. This Session initializes
itself with a Limited View based on the Roles and username passed in by Check Point. Any future requests
will be forwarded through the Limited View to the Secure Access Layer, which will return values to the
Limited View , ensuring that a Limited View of the data is maintained.

An important point to note is that it can be very hard to retrofit most of these patterns into an already
developed system. Specifically, Secure Access Layer, Session, and Limited View, can be very difficult to
retrofit into a system that was developed without security in mind. If a Single Access Point is created, it is
fairly straightforward to add Check Point later. Since Roles are used to define a Session and set up during
Check Point, additional Roles can easily be added later. Also, if all outside requests are forwarded through
some form of a Secure Access Layer, it will be easy to enhance and abstract the Secure Access Layer at a
later point. Because of these problems, application developers should get the security requirements early in
the design process so they can avoid the pitfalls.

Check Point

Secure Access Layer

Single Point Access

Session

Role

Limited View
defines

has

interacts with
creates

might use

used to create

uses

creates

Figure 5 - Pattern Interaction Diagram

19

Acknowledgments
We are grateful to the members of Professor Johnson's Patterns seminar: John Brant, Ian Chai, Brian Foote,
Ralph Johnson, Lewis Muir, Dragos Manolescu, Eiji Nabika, and Ed Peters; Dirk Riehle and our shepherd,
Eugene Wallingford, who reviewed earlier drafts and provided valuable feedback. We are also grateful to
our employers, Caterpillar / NCSA and Reuturs Information Technology for providing us the support and
experience to write about and develop such systems.

aSinglePointAccess aCheckPoint Role Class Session Class

validate (user)
and initialize Check

OK

newSession: (aRole)

aSessionWithaLimitedView

aRole

aSessionWithaRole

Limited View Class

startAGUI: (aSessionWithRole&LimitedView)

GetValuesAnd
CreateLV: (…)

Create Role

initLimitedView

aLimitedView

GUI’s

startAGUI: (…)

Figure 6 - Class Collaboration Diagram

20

References
[Barcalow 97] Jeffrey Barcalow. Strategic Planning Support for a Financial Model Framework, M.S.

Thesis, University of Illinois at Urbana-Champaign, Department of Computer Science,
1997. URL: http://www-cat.ncsa.uiuc.edu/~yoder/papers/thesis/barcalow.html

[Beck 97] Kent Beck. SMALLTALK Best Practice Patterns, Prentice Hall PTR, Upper Saddle
River, NJ, 1997.

[Brant &
Yoder 96]

John Brant and Joseph Yoder. "Reports," Collected papers from the PLoP '96 and
EuroPLoP '96 Conference, Technical Report #wucs-97-07, Dept. of Computer Science,
Washington University Department of Computer Science, February 1997. URL:
http://www.cs.wustl.edu/~schmidt/PLoP-96/yoder.ps.

[BMRSS 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.
Pattern-Oriented Software Architecture: A System of Patterns, John Wiley and Sons
Ltd., Chichester, UK, 1996.

[Foote &
Yoder 96]

Brian Foote and Joseph Yoder. “Evolution, Architecture, and Metamorphosis,” Pattern
Languages of Program Design 2, John M. Vlissides, James O. Coplien, and Norman L.
Kerth, eds., Addison-Wesley, Reading, MA., 1996.

[Fowler 97-1] Martin Fowler. Analysis Patterns: Reusable Object Models, Addison Wesley, 1997.

[Fowler 97-2] Martin Fowler. Dealing with Roles, Submitted to PLoP’ 97. URL:
http://www.aw.com/cp/roles2-1.html.

[GHJV 95] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[GemStone 96] Gemstone Systems, Inc. GemBuilder for VisualWorks, Version 5. July 1996. URL:
http://www.gemstone.com/Products/gbs.htm.

[ICSP] International Cryptographic Software Pages. URL: http://www.cs.hut.fi/ssh/crypto/.

[Lea] Doug Lea. Sessions. URL: http://gee.cs.oswego.edu/dl/pats/session.html.

[Lea 97] Doug Lea. Concurrent Programming in Java, Addison-Wesley, Reading, MA, 1997.

[NCSA] NCSA HTTPd Development Team. Mosaic User Authentication Tutorial. URL:
http://hoohoo.ncsa.uiuc.edu/docs-1.5/tutorials/user.html.

[OMG] Object Management Group. Security, Transactions, … and More. URL:
http://www.omg.org/corba/sectrans.htm#sec.

[PP 95] ParcPlace Systems, Inc. VisualWorks User’s Guide. 1995. URL:
http://www.parcplace.com/products/vworks/info/vw25.htm.

[Pryce 97] Nat Pryce. Type-Safe Session, Submitted to EuroPLoP’ 97. URL:
http://siesta.cs.wustl.edu/~schmidt/europlop-97/workshops.html#ww2p1.

[Schneier] Bruce Schneier. Applied Cryptography, 2nd edition. John Wiley & Sons, 1995.

[SSH] SSH (Secure Shell) Home Page. URL: http://www.cs.hut.fi/ssh/.

[SSL] The SSL Protocol. Netscape Communications, Inc., URL:
http://home.netscape.com/newsref/std/SSL.html.

[Yoder] Joseph Yoder. A Framework to Build Financial Models. URL:
http://www-cat.ncsa.uiuc.edu/~yoder/financial_framework.

