
Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 15 of 99

Encapsulate Subclasses with Creation Methods
Frequency: Common

Clients directly instantiate subclasses that

 live in one package and implement one interface

Make the subclass constructors non-public and let clients
create subclass instances using superclass Creation Methods

BooleanDescriptor

+BooleanDescriptor(...)

!

Client

Client

DefaultDescriptor

+DefaultDescriptor(...)

ReferenceDescriptor

+ReferenceDescriptor(...)

AttributeDescriptor

#AttributeDescriptor(...)

Descriptors

AttributeDescriptor

#AttributeDescriptor(...)
+forBoolean(...) : AttributeDescriptor
+forClass(...) : AttributeDescriptor
+forDate(...) : AttributeDescriptor
+forInteger(...) : AttributeDescriptor
+forString(...) : AttributeDescriptor

Descriptors

BooleanDescriptor

#BooleanDescriptor(...)

DefaultDescriptor

#DefaultDescriptor(...)

ReferenceDescriptor

#ReferenceDescriptor(...)

 classes not visible
 outside package

Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 16 of 99

Motivation

A client’s ability to directly instantiate subclasses is useful so long as the client needs to
know about the very existence of those subclasses. But what if the client doesn’t need that
knowledge? What if the subclasses lived in one package, implemented one interface and those
conditions weren’t likely to change? In that case, clients outside the package could not directly
instantiate subclasses, but would instead obtain instances via superclass Creation Methods, all of
which would use the common interface as a return type.

There are several motivations for doing this. First, it provides a way to rigorously apply the
mantra, separate interface from implementation [GoF], by ensuring that clients interact with
subclasses via their common interface. Second, it provides a way to reduce the “conceptual
weight” [Bloch] of a package by hiding classes that don’t need to be publicly visible outside their
package. And third, it simplifies the construction of available kinds of subclass instances by
making the set available through intention-revealing Creation Methods.

Despite these good things, some folks have reservations about applying this refactoring. I
address and respond to their concerns below:

1. They don’t like having a dependency cycle - i.e. having to add new Creation Methods to

a superclass just because they create a new subclass or add/modify a subclass constructor.
While this sounds like a real problem, in practice I don’t find that it is difficult to update
the superclass, particularly because by the time I apply this refactoring, there aren’t many
new subclasses or constructors to add.

2. They don’t like mixing Creation Methods with implementation methods on a superclass.

I don’t have a problem doing this, unless the Creation Methods just make it too hard to
see what the superclass does, in which case I would Extract Creation Class (20).

3. They don’t like giving a superclass knowledge of its subclasses. Somewhere they learned

that this was a bad idea and they usually have some good C++ stories to tell about why,
but when I point out that this refactoring happens within the context of one package with
subclasses that implement one interface, they usually quiet down.

4. They don’t like this refactoring in the context of code that gets handed off as object code,

since programmers who must use the object code won’t be able to add or modify
subclasses or Creation Methods when needed. I’m more sympathetic to this reservation.
If extensibility within the package is necessary and users don’t have source code, I would
not encapsulate the subclasses, but would instead provide a Creation Class for common
instances.

The sketch at the start of this refactoring gives you a glimpse of some object-relation

mapping code. Before the refactoring was implemented, programmers (including myself)
occasionally instantiated the wrong subclass or the right subclass with slightly incorrect
arguments (for example, passing in a primitive Java int, rather than an Integer object). The
refactoring reduced bug creation by encapsulated the knowledge about the subclasses and
producing a single place to get a variety of well-named subclass instances.

Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 17 of 99

Communication Duplication Simplicity

When you expect client code to
communicate with subclasses
via one inteface, your code
needs to communicate this.
Public subclass constructors
don’t help, since they allow
clients to couple themselves to
subclass types. Communicate
your intentions by protecting the
subclass constructors, creating
subclass instances via
superclass Creation Methods
and making the return type for
the instances be the common
interface.

Duplication isn't an issue with
this refactoring.

Making subclases publicly visible
when you want clients to interact
with them via one interface isn’t
simple: it invites programmers to
directly instantiate and couple
themselves to subclass types
and it communicates that it is ok
to extend the public interface of
individual subclasses.
Simplify this by making it
impossible to directly instantiate
subclasses and by offering up
instances via superclass
Creation Methods.

Prerequisites

• Your subclasses have the same public interface as their superclass.

This is essential because after the refactoring, all client code will interact with subclass
instances via their superclass interface.

• Your subclasses reside in the same package.

• Code within the package may be modified, when programmers must extend it.

Mechanics

1. Write an intention-revealing Creation Method on the superclass for a kind of instance that
a subclass constructor produces. Make the return type for the method be the type of the
superclass and make the method’s body be a call to the subclass constructor.

2. For the kind of instance chosen, replace all calls to the subclass constructor with calls to

the superclass Creation Method.

3. Compile and test.

4. Repeats steps 1 and 2 for any other kinds of instances that may be created by the subclass
constructor.

5. Declare the subclass constructor to be non-public (i.e. protected or package-protected).

6. Compile.

7. Repeat the above steps until every subclass constructor is non-public and all available

subclass instances may be obtainted via superclass Creation Methods.

Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 18 of 99

Example

1. We begin with a small hierarchy of classes that reside in a package called descriptors. The
classes assist in the object-relation mapping of database attributes to instance variables:

package descripors;

public abstract class AttributeDescriptor {

protected AttributeDescriptor(…)

public class BooleanDescriptor extends AttributeDescriptor {
public BooleanDescriptor(…) {

super(…);
}

public class DefaultDescriptor extends AttributeDescriptor {
public DefaultDescriptor(…) {

super(…);
}

public class ReferenceDescriptor extends AttributeDescriptor {
public ReferenceDescriptor(…) {

super(…);
}

The abstract AttributeDescriptor constructor is protected, and the constructors for the

three subclasses are public. Let’s focus on the DefaultDescriptor subclass. The first step is
to identify a kind of instance that can be created by the DefaultDescriptor constructor. To
do that, I look at some client code:

protected List createAttributeDescriptors() {

Vector result = new Vector();
result.add(new DefaultDescriptor("remoteId", getClass(), Integer.TYPE));
result.add(new DefaultDescriptor("createdDate", getClass(), Date.class));
result.add(new DefaultDescriptor("lastChangedDate", getClass(), Date.class));
result.add(new ReferenceDescriptor("createdBy", getClass(), User.class,

RemoteUser.class));
result.add(new ReferenceDescriptor("lastChangedBy", getClass(), User.class,

RemoteUser.class));
result.add(new DefaultDescriptor("optimisticLockVersion", getClass(), Integer.TYPE));
return result;

}

Here I see that DefaultDescriptor is being used to represent mappings for Integers and Dates.
It may also be used to map other types, but I must focus on one kind of instance at a time. So I
decide to write a Creation Method to produce attribute descriptors for Integers:

public abstract class AttributeDescriptor {

public static AttributeDescriptor forInteger(...) {
return new DefaultDescriptor(...);

}

I make the return type for the Creation Method an AttributeDescriptor because I want

clients to interact with all AttributeDescriptor subclasses via the AttributeDescriptor
interface and because I want to hide the very existence of AttributeDescriptor subclasses
from anyone outside the descriptors package.

If you do test-first programming, you would begin this refactoring by writing a test to obtain
the AttributeDescriptor instance you want from the superclass Creation Method.

2. Now client calls to create an Integer version of a DefaultDescriptor must be replaced with
calls to the superclass Creation Method:

Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 19 of 99

protected List createAttributeDescriptors() {
List result = new ArrayList();
result.add(AttributeDescriptor.forInteger("remoteId", getClass()));
result.add(new DefaultDescriptor("createdDate", getClass(), Date.class));
result.add(new DefaultDescriptor("lastChangedDate", getClass(), Date.class));
result.add(new ReferenceDescriptor("createdBy", getClass(), User.class,

RemoteUser.class));
result.add(new ReferenceDescriptor("lastChangedBy", getClass(), User.class,

RemoteUser.class));
result.add(AttributeDescriptor.forInteger("optimisticLockVersion", getClass()));
return result;

}

3. I compile and test that the new code works.

4. Now I continue to write Creation Methods for the remaining kinds of instances that the
DefaultDescriptor constructor can create. This leads to 2 more Creation Methods:

public abstract class AttributeDescriptor {

public static AttributeDescriptor forInteger(...) {
return new DefaultDescriptor(...);

}
public static AttributeDescriptor forDate(...) {

return new DefaultDescriptor(...);
}
public static AttributeDescriptor forString(...) {

return new DefaultDescriptor(...);
}

5. I now declare the DefaultDescriptor constructor protected:

public class DefaultDescriptor extends AttributeDescriptor {

protected DefaultDescriptor(…) {
super(…);

}

6. I compile and everything goes according to plan.

7. Now I repeat the above steps for the other AttributeDescriptor subclasses. When I’m
done, the new code:

• gives access to AttributeDescriptor subclasses via their superclass
• ensures that clients obtain subclass instances via the AttributeDescriptor interface
• prevents clients from directly instantiating AttributeDescriptor subclasses
• communicates to other programmers that AttributreDescriptor subclasses are not

meant to be public – the convention is to offer up access to them via the superclass and a
common interface.

