
Refactoring To Patterns, Copyright © 1999-2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 56 of 61

Replace Partially Implemented Interface with Adapter

Your class implements an interface but only provides
code for some of the interface’s methods.

Move the implemented methods to an Adapter

of the interface and make the Adapter
accessible from a Factory Method.

public class CardComponent extends Container implements MouseMotionListener ...
 public CardComponent(Card card,Explanations explanations) {
 ...
 addMouseMotionListener(this);
 }
 public void mouseDragged(MouseEvent e) {
 e.consume();
 dragPos.x = e.getX();
 dragPos.y = e.getY();
 setLocation(getLocation().x+e.getX()-currPos.x,

 getLocation().y+e.getY()-currPos.y);
 repaint();
 }
 public void mouseMoved(MouseEvent e) {
 }

public class CardComponent extends Container ...
 public CardComponent(Card card,Explanations explanations) {
 ...
 addMouseMotionListener(createMouseMotionAdapter());
 }
 private MouseMotionAdapter createMouseMotionAdapter() {
 return new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 e.consume();
 dragPos.x = e.getX();
 dragPos.y = e.getY();
 setLocation(getLocation().x+e.getX()-currPos.x,
 getLocation().y+e.getY()-currPos.y);
 repaint();
 }
 };
 }

!

Motivation

Empty methods in concrete classes bother me. I often find that they’re there because a class
needs to satisfy a contract by implementing an interface, but only really needs code for some of
the interface’s methods. The rest of the methods get declared, but remain empty: they were added
to satisfy a compiler rule. This may not bother you, but it bothers me. I find that these empty
methods add to the heftiness of a class’s interface (i.e. it’s public methods), falsely advertise
behavior (I’m a class that can, among other things, do X(), Y() and Z() – only I really only
provide code for X()), and forces me to do work (like declaring empty methods) that I’d rather
not do.

The Adapter pattern provides a nice way to refactor this kind of code. By implementing
empty methods for every method defined by an interface, the Adapter lets me subclass it to
supply just the code I need. In Java, I don’t even have to formally declare an Adapter subclass: I
can just create an anonymous inner Adapter class and supply a reference to it from a Factory
Method.

Refactoring To Patterns, Copyright © 1999-2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 57 of 61

Communication Duplication Simplicity
Empty methods on a class don’t
communicate very much at all.
Either someone forgot to delete
the empty method, or it is just
there because an interface
forces you to have it there. It is
far better to communicate only
what you actually implement,
and an Adapter can make this
feasible.

If more than one of your classes
partially implements an interface,
you’ll have numerous empty
methods in your classes. You
can remove this duplication by
letting each of the classes work
with an Adapter which handles
the empty method declarations.

It is always simpler to supply
less code than more. This
refactoring gives you a way to
cut down on the number of
methods your classes declare.
In addition, when used to adapt
multiple interfaces, it can provide
a nice way to partition methods
in each of their respective
adapters.

Mechanics

1. If you don’t already have an adapter for the interface (which we’ll call A), use Adapt

Interface to create one. Then create a Factory Method that will return a reference to an
instance of your Adapter (which we’ll call AdapterInstance).

2. Delete every empty method in your class that’s solely there because your class

implements A.

3. For those methods specified by A for which you have code, move each to your
AdapterInstance.

4. Remove code declaring that your class implements A.

5. Supply the AdapterInstance to clients who need it.

Example

We’ll use the example from the code sketch above. In this case we have a class called
CardComponent that extends the JDK Component class and implements the JDK’s
MouseMotionListener interface. However, it only implements one of the two methods
declared by the MouseMotionListener interface. Let’s see how Adapter can improve the
code.

1. The first step involved creating a Factory Method for our AdapterInstance. If we don’t have
an AdapterInstance, we need to create one using the refactoring, Adapt Interface. In this case, the
JDK already supplies us with an adapter for the MouseMotionListener interface. It’s called
MouseMotionAdapter. So we create the following new method on the CardComponent class,
using Java’s handy anonymous inner class capability:

private MouseMotionAdapter createMouseMotionAdapter() {

return new MouseMotionAdapter() {
};

}

2. Next, we delete the empty method(s) that CardComponent declared because it implemented
MouseMotionListener. In this case, it implemented mouseDragged(), but did not implement
mouseMoved().

public void mouseMoved(MouseEvent e) {}

3. We’re now ready to move the mouseDragged() method from CardComponent to our
instance of the MouseMotionAdapter:

Refactoring To Patterns, Copyright © 1999-2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 58 of 61

private MouseMotionAdapter createMouseMotionAdapter() {

return new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

e.consume();
dragPos.x = e.getX();
dragPos.y = e.getY();
setLocation(getLocation().x+e.getX()-currPos.x,

getLocation().y+e.getY()-currPos.y);
repaint();

}
};

}

4. Now we can remove the implements MouseMotionListener from CardComponent.

public class CardComponent extends Container implements MouseMotionListener {

5. Finally, we must supply the new adapter instance to clients that need it. In this case, we must
look at the constructor. It has code that looks like this:

public CardComponent() {

…
addMouseMotionListener(this);

}

This needs to be changed to call our new, private, Factory Method:

public CardComponent() {
…
addMouseMotionListener(createMouseMotionAdapter());

}

Now we test. Unfortunately, since this is mouse related code, I don’t have automated unit tests.
So I resort to some simple manual testing and confirm that everything is ok.

