
DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 150 of 178

Extract Composite

Classes in a hierarchy have duplicate fields and logic
for storing and processing children from the same hierarchy

Create a Composite superclass and

move the duplicated fields and logic to it

�

 public String toPlainTextString() {
 StringBuffer sb = new StringBuffer();
 for (Enumeration e=linkData();e.hasMoreElements();) {
 HTMLNode node = (HTMLNode)e.nextElement();
 sb.append(node.toPlainTextString());
 }
 return sb.toString();
 }

HTMLTag

+toPlainTextString() : String
...

HTMLFormTag

-allNodesVector : Vector

+toPlainTextString() : String
...

HTMLLinkTag

-nodeVector : Vector
+toPlainTextString() : String
...

 public String toPlainTextString() {
 StringBuffer stringRepresentation = new StringBuffer();
 Enumeration e = getAllNodesVector().elements()
 for (;e.hasMoreElements();) {
 HTMLNode node = (HTMLNode)e.nextElement();
 stringRepresentation.append(node.toPlainTextString());
 }
 return stringRepresentation.toString();
 }

 public String toPlainTextString() {
 StringBuffer plainTextContents = new StringBuffer();
 for (Enumeration e=children();e.hasMoreElements();) {
 HTMLNode node = (HTMLNode)e.nextElement();
 plainTextContents.append(node.toPlainTextString());
 }
 return plainTextContents.toString();
 }

HTMLCompositeTag
#children : Vector
+toPlainTextString() : String
...

HTMLNode

+toPlainTextString() : String
...

HTMLFormTag

...

HTMLLinkTag

...

HTMLStringNode

HTMLImageTag

HTMLTag

+toPlainTextString() : String
...

HTMLNode

+toPlainTextString() : String
...

HTMLStringNode

HTMLImageTag

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 151 of 178

Motivation

In Extract Superclass [F], Martin Fowler explains that if you have two or more
classes with similar features, it makes sense to put the common features into a superclass.
This refactoring is similar only it’s concerned with the case when the common features
duplicated across subclasses are begging to be refactored into a Composite [GoF].

I often encounter subclasses in hierarchies that store collections of children and have
methods for reporting information about those children. When the children being
collected happen to be classes in the same hierarchy, there’s a good chance that much
duplicate code could be removed by refactoring to a Composite.

Duplication removal is at the heart of this refactoring and Extract Superclass [F].
When you have the type of child-related code I described above, following the mechanics
for either refactoring will lead you to the creation of a Composite. So why did I choose
to write this special case refactoring? Mostly because I think it’s useful to give folks
examples of duplication that are more subtle than others and to demonstrate different
ways to remove the duplication. In addition, it would be excellent if the narrower
mission of this refactoring (i.e., the removal of duplicate code related only to collections
of children and related methods) made it easier for tools vendors to automate this
refactoring.

Communication Duplication Simplicity
To-do To-do To-do

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 152 of 178

Mechanics

Since this refactoring is a generalized case of Martin Fowler’s refactoring, Extract Superclass
[F], it’s mechanics are similar. The main difference is the extent to which you’ll extract code to a
superclass. For this refactoring, the extracted code is the child-handling logic that is similar
across classes in a hierarchy. Once you finish this refactoring, you can continue to pull common
functionality up into your newly created Composite by following the mechanics in Extract
Superclass [F].

1. Create a composite, an abstract superclass, named to reflect that it will contain children
(e.g. CompositeTag).

2. Make each child-container (i.e. a class in the hierarchy that contains duplicate child-

handling code) a subclass of composite.

3. In a child-container, find a child-processing method that is purely-duplicated or partially-
duplicated across the child-containers. A purely-duplicated method will have the same
method body with the same or different method names across child-containers. A
partially-duplicated method will have a method body with common and uncommon code
and the same or different method names across child-containers.

Whether you’ve found a purely-duplicated or partially-duplicated method, if its name
isn’t consistent across child-containers, make it consistent by applying Rename Method
[F].

For a purely-duplicated method, move the child collection field referenced by the method
to the composite by applying Pull Up Field [F]. Rename this field if its name doesn’t
make sense for all child-containers. Now move the method to the composite by applying
Pull Up Method [F]. If the pulled-up method relies on contructor code still residing in
child-containers, pull up that code to the composite’s constructor.

For a partially-duplicated method, see if the method body can be made consistent across
all child-containers using Substitute Algorithm [F]. If so, refactor it as a purely-
duplicated method. Otherwise, extract the code that is common across all child-container
implementations using Extract Method [F] and pull it up to the composite using Pull Up
Method [F]. If the method body follows the same sequence of steps, some of which are
implemented differently, see if a skeleton of the method body can be pulled up using
Form Template Method (149).

� Compile and test after every one of the above-mentioned refactorings.

4. Repeat step 3 for child-processing methods in the child-containers that contain purely-

duplicated or partially-duplicated code.

5. Check each client of each child-container to see if it can now communicate with the

child-container using the composite interface. If it can, make it do so.

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 153 of 178

Example

I’ve been refactoring some code on an open-source project that was started by my colleague,
Somik Raha. The project is an HTML parser (see http://sourceforge.net/projects/htmlparser).
When the parser parses a piece of HTML, it identifies and creates objects representing HTML
tags and pieces of text. For example, here’s some HTML:

<HTML>

<BODY>
Hello, and welcome to my web page! I work for

</BODY>
</HTML>

Given such HTML, the parser would create objects of the following types:

HTMLTag (for the <BODY> tag)
HTMLStringNode (for the String, “Hello, and welcome…”)
HTMLLinkTag (for the tag)

You might wonder what the parser does with the tag? That tag, which represents
an HTMLImageTag, is treated as a child of the HTMLLinkTag. When the parser notices that the
link tag contains an image tag, it constructs and gives one HTMLImageTag object as a child to the
HTMLLinkTag object.

Additional tags in the parser, such as HTMLFormTag, HTMLTitleTag and others, are also
child-containers. As I studied some of these classes, it didn’t take long to spot duplicate code for
storing and handling child nodes. For example, consider the following:

public class HTMLLinkTag extends HTMLTag...

private Vector nodeVector;

public String toPlainTextString() {
StringBuffer sb = new StringBuffer();
HTMLNode node;
for (Enumeration e=linkData();e.hasMoreElements();)
{

node = (HTMLNode)e.nextElement();
sb.append(node.toPlainTextString());

}
return sb.toString();

}

public class HTMLFormTag extends HTMLTag...
protected Vector allNodesVector;

public String toPlainTextString() {
StringBuffer stringRepresentation = new StringBuffer();
HTMLNode node;
for (Enumeration e=getAllNodesVector().elements();e.hasMoreElements();) {

node = (HTMLNode)e.nextElement();
stringRepresentation.append(node.toPlainTextString());

}
return stringRepresentation.toString();

}

 Since HTMLFormTag and HTMLLinkTag both contain children, they both have a Vector for
storing children, though it goes by a different name in each class. Since both classes need to
support the toPlainTextString() operation, which outputs the non-HTML-formatted text of

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 154 of 178

the tag’s children, both contain logic to iterate over their children and produce plain text. Yet the
code to do this operation is nearly identical in these classes! In fact, there are several nearly-
identical methods in the child-container classes, all of which reek from duplication. So let’s
apply Extract Composite to this code:

1. I must first create an abstract class that will become the superclass of the child-container
classes. Since the child-container classes, like HTMLLinkTag and HTMLFormTag, are already
subclasses of HTMLTag, I create the following:

public abstract class CompositeTag extends HTMLTag {

public CompositeTag(
int tagBegin,
int tagEnd,
String tagContents,
String tagLine) {
super(tagBegin, tagEnd, tagContents, tagLine);

}
}

2. Now I make the child-containers subclasses of CompositeTag:

public class HTMLFormTag extends CompositeTag

public class HTMLLinkTag extends CompositeTag

and so on…

(Note, for the remainder of this refactoring, I’ll only show code from two child-containers,
HTMLLinkTag and HTMLFormTag, even though there are others in the code base).

3. I look for a purely-duplicated method across all child-containers and find
toPlainTextString(). Since this method has the same name in each child-container, I don’t
have to change its name anywhere. My first step is to pull up the child Vector that stores
children. I do this using the HTMLLinkTag class:

public class HTMLLinkTag extends CompositeTag...

private Vector nodeVector;

public abstract class CompositeTag extends HTMLTag...

protected Vector nodeVector; // pulled-up field

Since I want HTMLFormTag to use the same newly-pulled-up Vector, nodeVector (yes, it’s an
awful name, I’ll change it soon), I rename its local child Vector to be nodeVector:

public class HTMLFormTag extends CompositeTag...

protected Vector allNodesVector;
protected Vector nodeVector;
...

And then I delete this local field (since HTMLFormTag inherits it):

public class HTMLFormTag extends CompositeTag...

protected Vector nodeVector;

Now I can rename nodeVector in the composite:

public abstract class CompositeTag extends HTMLTag...

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 155 of 178

protected Vector nodeVector;
protected Vector children;

I’m now ready to pull up the toPlainTextString() method to CompositeTag. My first
attempt at doing this using the automated refactoring tool in Eclipse fails, because the two
methods aren’t identical in HTMLLinkTag and HTMLFormTag. The trouble is, HTMLLinkTag
gets an iterator on its children by means of the method, linkData(),while HTMLFormTag gets
an iterator on its children by means of the getAllNodesVector().elements():

public class HTMLLinkTag extends CompositeTag

public Enumeration linkData()
{

return children.elements();
}

public String toPlainTextString()...
for (Enumeration e=linkData();e.hasMoreElements();)

...

public class HTMLFormTag extends CompositeTag...

public Vector getAllNodesVector() {
return children;

}
public String toPlainTextString()...

for (Enumeration e=getAllNodesVector().elements();e.hasMoreElements();)
...

To fix this problem, I must create a consistent method for getting access to a

CompositeTag’s children. I won’t bore you with the steps. I end up with:

public abstract class CompositeTag extends HTMLTag...

public Enumeration children() {
return children.elements();

}

…and a version of toPlainTextString() that’s now identical in HTMLLinkTag and
HTMLFormTag:

public String toPlainTextString() {

StringBuffer plainTextContents = new StringBuffer();
HTMLNode node;
for (Enumeration e=children();e.hasMoreElements();) {

node = (HTMLNode)e.nextElement();
plainTextContents.append(node.toPlainTextString());

}
return plainTextContents.toString();

}

The automated refactoring in Eclipse now lets me easily pull up toPlainTextString() to

CompositeTag. I run my tests and everything is ok.

4. In this step I repeat step 3 for additional methods that may be pulled-up from the child-
containers to the composite. There happen to be several of these methods. I’ll show you one
that involves a method called toHTML(). This method outputs the HTML of a given node. Both
HTMLLinkTag and HTMLFormTag have their own implementations for this methods. To
implement step 3, I must first decide if toHTML() is purely-duplicated or partially-duplicated.

Here’s a look at how HTMLLinkTag implements the method:

public class HTMLLinkTag extends CompositeTag

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 156 of 178

public String toHTML() {
StringBuffer sb = new StringBuffer();
putLinkStartTagInto(sb);
//sb.append(tagContents.toString());
HTMLNode node;
for (Enumeration e = children();e.hasMoreElements();) {

node = (HTMLNode)e.nextElement();
sb.append(node.toHTML());

}
sb.append("");
return sb.toString();

}

public void putLinkStartTagInto(StringBuffer sb) {
sb.append("<A ");
String key,value;
int i = 0;
for (Enumeration e = parsed.keys();e.hasMoreElements();) {

key = (String)e.nextElement();
i++;
if (key!=TAGNAME) {

value = getParameter(key);
sb.append(key+"=\""+value+"\"");
if (i<parsed.size()-1) sb.append(" ");

}
}
sb.append(">");

}

After creating a buffer, putLinkStartTagInto(…) deals with getting the contents of the start
tag into the buffer, along with any attributes it may have. The start tag would be something like
 or ., where HREF or NAME represent attributes of the tag. The
tag could have children, such as an HTMLStringNode, as in I’m a string

node or child HTMLImageTags. Finally there is the end tag, , which must be added to
the result buffer before the HTML representation of the tag is returned.

Let’s now see how HTMLFormTag implements this method:

public class HTMLFormTag extends CompositeTag...

public String toHTML() {
StringBuffer rawBuffer = new StringBuffer();
HTMLNode node,prevNode=null;
rawBuffer.append("<FORM METHOD=\""+formMethod+"\" ACTION=\""+formURL+"\"");
if (formName!=null && formName.length()>0)

rawBuffer.append(" NAME=\""+formName+"\"");
Enumeration e = children.elements();
node = (HTMLNode)e.nextElement();
HTMLTag tag = (HTMLTag)node;
Hashtable table = tag.getParsed();
String key,value;
for (Enumeration en = table.keys();en.hasMoreElements();) {

key=(String)en.nextElement();
if (!(key.equals("METHOD")

|| key.equals("ACTION")
|| key.equals("NAME")
|| key.equals(HTMLTag.TAGNAME))) {
value = (String)table.get(key);
rawBuffer.append(" "+key+"="+"\""+value+"\"");

}
}
rawBuffer.append(">");
rawBuffer.append(lineSeparator);
for (;e.hasMoreElements();) {

node = (HTMLNode)e.nextElement();
if (prevNode!=null) {

if (prevNode.elementEnd()>node.elementBegin()) {
// Its a new line
rawBuffer.append(lineSeparator);

}

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 157 of 178

}
rawBuffer.append(node.toHTML());
prevNode=node;

}
return rawBuffer.toString();

}

This implementation has some similarities and differences to the HTMLLinkTag
implementation. Therefore, according to the definition in the mechanics, toHTML() should be
treated as a partially-duplicated child-container method. That means that my next step is to see if
I can make one implementation of this method by applying the refactoring, Substitute Algorithm
[F].
 It turns out that I can. It is easier than it looks because both versions of toHTML()
essentially do the same three things: output the start tag along with any attributes, output any
child tags, output the closed tag. Knowing that, I arrive at one method for dealing with the start
tag, which I pulled-up to composite:

public abstract class CompositeTag extends HTMLTag...

public void putStartTagInto(StringBuffer sb) {
sb.append("<" + getTagName() + " ");
String key,value;
int i = 0;
for (Enumeration e = parsed.keys();e.hasMoreElements();) {

key = (String)e.nextElement();
i++;
if (key!=TAGNAME) {

value = getParameter(key);
sb.append(key+"=\""+value+"\"");
if (i<parsed.size()) sb.append(" ");

}
}
sb.append(">");

}

public class HTMLLinkTag extends CompositeTag...
public String toHTML() {

StringBuffer sb = new StringBuffer();
putStartTagInto(sb);
...

public class HTMLFormTag extends CompositeTag
public String toHTML() {

StringBuffer rawBuffer = new StringBuffer();
putStartTagInto(rawBuffer);
...

I perform similar operations to make a consistent way of obtaining HTML from child nodes

and from an end tag and all of that work enables me to pull-up one generic toHTML() method to
the composite:

public abstract class CompositeTag extends HTMLTag...

public String toHTML() {
StringBuffer htmlContents = new StringBuffer();
putStartTagInto(htmlContents);
putChildrenTagsInto(htmlContents);
putEndTagInto(htmlContents);
return htmlContents.toString();

}

To complete this part of the refactoing, I’ll continue to move child-related methods to the
CompositeTag, thought I’ll spare you the details.

DRAFT of Refactoring To Patterns, Copyright © 2003, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 158 of 178

5. The final step involves checking clients of child-containers to see if they can now
communicate with the child-containers using the CompositeTag interface. In this case, there
are no such cases in the parser itself, so I am finished with the refactoring.

