
Refactoring To Patterns, Copyright © 1999-2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 5 of 62

Chain Constructors *

You have multiple constructors
that contain duplicate code

Chain the constructors together

to obtain the least duplicate code

public class Loan {
 ...
 public Loan(float notional, float outstanding, int rating, Date expiry) {
 this.strategy = new TermROC();
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating =rating;
 this.expiry = expiry;
 }
 public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
 this.strategy = new RevolvingTermROC();
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
 public Loan(CapitalStrategy strategy, float notional, float outstanding,
 int rating, Date expiry, Date maturity) {
 this.strategy = strategy;
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
}

public class Loan {
 ...
 public Loan(float notional, float outstanding, int rating, Date expiry) {
 this(new TermROC(), notional, outstanding, rating, expiry, null);
 }
 public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
 this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);
 }
 public Loan(CapitalStrategy strategy, float notional, float outstanding,

 int rating, Date expiry, Date maturity) {
 this.strategy = strategy;
 this.notional = notional;
 this.outstanding = outstanding;
 this.rating = rating;
 this.expiry = expiry;
 this.maturity = maturity;
 }
}

!

Refactoring To Patterns, Copyright © 1999-2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 6 of 62

Motivation

Code that’s duplicated across two or more of a class's constructors is an invitation for trouble.

Someone adds a new variable to a class, updates a constructor to initialize the variable, but
neglects to update the other constructors, and bang, say hello to your next bug. The more
constructors you have in a class, the more duplication will hurt you. It’s therefore a good idea to
reduce or remove all duplication if possible, which has the added bonus of reducing your
system’s code bloat.

 We often accomplish this refactoring with constructor chaining: specific constructors call
more general-purpose constructors until a final constructor is reached. If you have one
constructor at the end of every chain, I call that your catch-all constructor, since it handles every
constructor call. This catch-all constructor often accepts more parameters than the other
constructors, and may or may not be private or protected.

If you find that having many constructors on your class detracts from its usability, consider
Replace Multiple Constructors with Factory Methods.

Communication Duplication Simplicity
When constructors in a class
implement duplicate work, the
code fails to communicate what
is specific from what is general.
Communicate this by having
specific constructors forward
calls to more general-purpose
constructors and do unique work
in each constructor.

Duplicate code in your
constructors makes your classes
more error-prone and harder to
maintain. Find what is common,
place it in general-purpose
constructors, forward calls to
these general constructors and
implement what isn’t general in
each constructor.

If more than one constructor
contains the same code, it’s
harder to see how each
constructor is different. Simplify
your constructors by making
specific ones call more general
purpose ones, in a chain.

Mechanics

1. Find two constructors (called A and B) that contain duplicate code. Determine if A

can call B or if B can call A, such that the duplicate code can be safely (and hopefully
easily) deleted from one of the two constructors.

2. Compile and test.

3. Repeat steps 1 and 2 for all constructors in the class, including ones you’ve already

touched, in order to obtain as little duplication across all constructors as possible.

4. Change the visibility of any constructors that may not need to be public.

5. Compile and test.

Example

1. We’ll go with the example shown in the code sketch. We start with a single Loan class, which
has three constructors to represent different types of loans and tons of bloated and ugly
duplication:

public Loan(float notional, float outstanding, int rating, Date expiry) {

this.strategy = new TermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;

}

Refactoring To Patterns, Copyright © 1999-2001, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 7 of 62

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {
this.strategy = new RevolvingTermROC();
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

public Loan(CapitalStrategy strategy, float notional, float outstanding, int rating,
Date expiry, Date maturity) {

this.strategy = strategy;
this.notional = notional;
this.outstanding = outstanding;
this.rating = rating;
this.expiry = expiry;
this.maturity = maturity;

}

I study the first two constructors. They do contain duplicate code, but so does that third
constructor. I consider which constructor it would be easier for the first constructor to call. I see
that it could call the third constructor, with a minimum about of work. So I change the first
constructor to be:

public Loan(float notional, float outstanding, int rating, Date expiry) {

this(new TermROC(), notional, outstanding, rating, expiry, null);
}

2. I compile and test to see that the change works.

3. I repeat steps 1 and 2, to remove as much duplication as possible. This leads me to the second
constructor. It appears that it too can call the third constructor, as follows:

public Loan(float notional, float outstanding, int rating, Date expiry, Date maturity) {

this(new RevolvingTermROC(), notional, outstanding, rating, expiry, maturity);
}

I’m now aware that constructor three is my class’s catch-all constructor, since it handles all of the
construction details.

4. I check all callers of the three constructors to determine if I can change the public visibility of
any of them. In this case, I can’t (take my word for it – you can’t see the code that calls these
methods).

5. I compile and test to complete the refactoring.

