
Why Ensemble Programming?
"All the brilliant people working on the same
thing, at the same time, in the same space…."
– Woody Zuill

“Ensemble Programming is a continuous
integration of ideas.” – Joshua Kerievsky

“Context Debt will accrue interest, pay it early
and often.” – Igor Poltosi

There are many ways to ensemble successfully.
In general, there is one computer, a keyboard
and mouse, one or more monitors, a
whiteboard, one Driver, and one or more
Navigators sharing a work environment like the
one below:

Image by Mark Pearl

Ideal Ensemble Size The whole team,
consisting of 3-5 people is ideal. Beyond 5
people, an ensemble may encounter difficulties
keeping everyone engaged. Doing frequent
rotations can address this.

Driver’s Role - The Driver operates the
keyboard to input/implement ideas made by
the Navigator(s).

Navigator(s) Role - Navigators direct the
Driver. This allows everyone in the ensemble to
interact with the Driver. If that causes chaos,
have one Navigator give directions to the
Driver– the Navigator serves as the voice of the
whole ensemble. Newbies to ensemble
programming can ask how best to navigate.

Driver Dos & Don’ts
● Drivers don’t navigate. If the Driver is the

only one who knows what to do, they should
navigate. In general, SMEs navigate.

● Each Driver can share how they prefer to be
directed, including asking questions about
intent, location, and details. Ultimately,
navigators must communicate in a way that
allows the Driver to understand and take
action.

● If no one is navigating, the Driver must stop
typing.

Navigator(s) Dos & Don’ts
● Navigator ideas pass through the Driver’s

ears and hands into the keyboard and code.
● Navigators must pay attention to the Driver’s

skill level. If the Driver needs word-by-word
instructions, the ensemble must explain in
detail what the Driver needs to do.

● When the Driver is more advanced,
Navigators then give higher-level
instructions, like “commit” or “move that
method to the parent class”. Over-navigating
entails too much direction, and
under-navigating too little.

● Don’t sit and watch the Driver work. Everyone
learns and contributes in an ensemble.

Ensemble Responsibilities
● Treat everyone with kindness, consideration,

and respect
● Plan, discuss, research, and work out ideas

on the whiteboard
● If a Driver begins to navigate and drive

simultaneously, someone in the Ensemble
should call them on it. It’s a no-no.

● The Ensemble continues as people join or
leave

● Stakeholders, Managers, Subject Matter
Experts, etc. are welcome to join and are not
required to drive or navigate.

Leaving and Joining - It is fine for people to
leave or join the Ensemble. If they are a Driver,
they relinquish that role to the next person in
line and the ensemble will adjust its rotation
schedule.

Switching Drivers - A Driver switchover should
only take a few seconds. Switching Drivers is
easiest when the Ensemble has the same setup.



If individuals in the Ensemble have preferred
tools and settings, consider using tools like
mob.sh so folks can have their own IDE
settings..

Remote Ensembles - Here are some setup
suggestions for successful remote ensemble
programming sessions:
● For collaborative keyboard and mouse

sharing, there are several tools available:
CodeTogether, Code With Me, LiveShare,
Tuple, and others.

● We also use mob.sh to share the code
repository when our IDE setup is different
across the team.

● For screen sharing several tools are
available: Zoom, Gather, Microsoft Teams,
TeamViewer, and Webex to name a few.

● There are several whiteboard-type tools for
story maps, discovery trees, and high-level
design discussions. Some that stand out are
Miro, Mural, and Figma.

● Perhaps two most important items are a
comfortable chair and a great stainless steel
container to stay hydrated. Hands down we
recommend the YETI brand.

● A high-quality camera and mic are a must.

Timing and Breaks
● Use an automated timer (e.g., Dillon Kearns’

Mobster App) to initiate role changes and
breaks.

● Try the Ping-Pong collaboration pattern or
switch roles every 7 minutes on average
(beginners should switch every 2-4 minutes).

● The whole ensemble should take regularly
scheduled breaks. The Pomodoro method, a
proven method of taking regular breaks to
increase efficiency, suggests taking breaks
every 48 minutes.

Bias for Action - When discussing how to solve
a problem, get out of the abstract as soon as
possible.
● Do not argue for more than 5 minutes.
● If there are multiple ideas just pick one and

try it, then try another if necessary.
● Keep the Ensemble moving with this quote

from Brian Marick: “An example would be
handy right about now”.

Value of Ensembles - When done well,
ensembles help a team:
● Deliver solutions faster by increasing focus,

building skills, and sharing knowledge.
● Produce better quality code because the

ensemble reviews the code as it is being
written.

● Cross-train its members ergo removing
knowledge silos and removing context debt.

● Feel the pain of tedious tasks. This is good,
as it biases toward fool-proofing and
automation.

● Deliver results faster by reducing the team’s
“work in progress” and eliminating delays
from handoffs with the whole team present.

Pitfalls - A poorly functioning ensemble will
produce value slowly. The following are some
signs of poor ensemble programming and what
do to if you observe these behaviors:
● Excessive discussion or arguing - Run some

experiments, then decide which the
Ensemble prefers.

● Zoning out - Take a short break with an
agreement to focus. Take breaks more often.

● Ignoring roles/timers - Team members
should hold each other accountable

● Producing poor designs or not valuing good
design - An Ensemble that lacks people with

good design skills won’t magically produce
good designs. To improve the design, the
Ensemble should get expert help.

● Conflict between team members - In order
to be a well-functioning Ensemble, everyone
must embrace kindness, consideration, and
respect as the way of working.

Don’t Stop the Work - The Ensemble can
temporarily delegate a member as a researcher,
to find solutions to something they cannot
easily figure out. Meanwhile, the Ensemble can
work elsewhere in the code. It is important that
people feel comfortable asking questions, but if
the Ensemble is moving slowly due to a lot of
questions, it is better to set aside time outside
of the working session to answer questions.
Fast throughput is an important goal.

Invite Experts - If an Ensemble gets stuck, they
may invite an expert to join and help resolve a
problem. Be sure it is an invitation and not a
demand (the guest is not required to drive).

Resources
● Mob Programming – A Whole Team

Approach, by Woody Zuill and Kevin
Meadows

● Code with the Wisdom of the Crowd: Get
Better Together with Mob Programming, by
Mark Pearl

● The Mob Programming Guidebook, by
Maaret Pyhäjärvi

● Mobster - free tool that helps teams manage
rotations and breaks (http://mobster.cc)

● Tuple - remote pairing & ensemble app
(https://tuple.app/)

http://mob.sh
http://mob.sh
http://mobster.cc
https://tuple.app/

