
Patterns & XP
Joshua Kerievsky

Industrial Logic, Inc
Joshua@industriallogic.com

January, 2000

Abstract

Patterns and Extreme Programming (XP) both provide invaluable aid to those who design and develop
software. But XP has thus far focused heavily on Refactoring while remaining all but silent about Patterns.
In this paper, I ask why, and ultimately show how Patterns are better when they are implemented the XP
way, and how XP is better when it includes the use of Patterns.

Acknowledgements

Many thanks to Kent Beck, Martin Fowler and Ward Cunningham for kindly reviewing this paper.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 2 of 13

We start our programming careers not knowing very much and producing software that
reflects our inexperience: we create code that is bloated, buggy and brittle, hard to
maintain and hard to enhance. Over time, we become better software designers: we learn
from authors, experts and our own mistakes. Now we write highly flexible software that
is generic and robust. When asked to write a new system, we know to inquire about
current and future requirements, so that we can design software to handle current and
future needs.

At this stage in our careers, Extreme Programming tells us that we often over-engineer
software. We’ve learned from our mistakes and don’t want to repeat them, so we make
great efforts to produce flexible and robust designs early in the life of a system.
Unfortunately, we don’t realize that all our work will be meaningless and wasteful if the
system never needs such degrees of flexibility and robustness. We’ve over-engineered.

I’ve over-engineered. Honestly, it’s kind of fun to sit in a room with other designers and
think how to design software to accommodate many current and future requirements. We
get to take all the lessons we’ve learned, especially the best practices, and apply them to
the design. We often know that the list of requirements will change, but users or
customers are always changing requirements. Nevertheless, we think we can be brilliant
enough to design software that will be so flexible that it won’t really be a problem when
the requirements change.

Classic over-engineering.

Today, Extreme Programming would expose this folly. It says that we must learn to let
designs emerge and not anticipate what will be. XP says “do the simplest thing that could
possibly work” because “you aren’t gonna need it.” And Kent Beck says:

You need to choose the best way to work within a value system of
communication, simplicity, feedback, and courage to keep you from over-
engineering out of fear [Beck1 00].

Agreed. However, I must now quote my friend Norm Kerth. Norm has been around a
while and has seen a lot. A year ago I asked him what he thought of XP. He said:

I like everything that is in XP. What concerns me is what is not in XP
[Kerth 99].

At the time, I just thought Norm was being conservative. But now I’m not sure.

Noticeably absent from XP is the practice of using Patterns. While some of XP’s
founders helped pioneer and build the patterns community, no one has yet strongly
articulated how Patterns fit into XP.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 3 of 13

For a while, that simply didn’t bother me. But now, it does.

It bothers me because my experiences with Patterns and XP lead me to believe that using
Patterns is better in the context of XP practices, and XP practices are better when they
include Patterns.

This will take some explaining. I’ll start by describing some of my experiences with
Patterns and XP.

Starting in 1995, I began to immerse myself in Patterns. I was learning the Patterns
literature, leading a weekly study group on Patterns, designing and developing software
with Patterns, and organizing and running UP (an international conference about Using
Patterns). It would be an understatement to say that I was enthusiastic about Patterns.

At the time, like many who first learn Patterns, I was a bit over-anxious to use them. That
is not a good thing because it can make designs more complex than they need to be. But
I wouldn’t learn that until I started to learn about Refactoring.

Around 1996, I was first exposed to Refactoring. I started experimenting with it and
quickly observed that Refactoring was leading me away from certain principles I’d
learned in my studies of Patterns.

For instance, one of the mantras of the landmark book, Design Patterns: Elements of
Reusable Object-Oriented Software, is:

Program to an interface, not an implementation [GHJV1 95]

The authors of Design Patterns do an excellent job of explaining why you’d want to
follow this advice. In nearly every pattern, there is a discussion of how your software
becomes less flexible and less changeable when you program to a specific
implementation. Interfaces nearly always come to the rescue.

But what if you don’t need that flexibility or changability? Why begin a design
anticipating a need that may never arise? This was an awakening for me. So around that
time I recorded the following Java Idiom:

Don’t Distinguish Between Classes And Interfaces
I used to place an "I" at the end of the names of my interfaces. But as I
continue to learn more about the rhythm of refactoring, I'm starting to see
the wisdom in making class and interface names look the same. Here's
why: during development you know that you could use an interface to
make something really flexible (vary the implementation) but there may
be no real need to vary the implementation today. So instead of "over
designing" by anticipating too much, you stay simple and make the thing a
class. And somewhere you write a method signature that expects an object
of that class type. Then, a few days, weeks, months later, there is a definite

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 4 of 13

"need" for the interface. So you convert the original class into an interface,
create an implementation class (that implements the new interface) and let
your original signature (or signatures) remain unchanged [Kerievsky 96].

I continued to learn similar lessons as I studied Refactoring, and gradually, the way I
used Patterns began to change. I would no longer develop full-blown implementations of
a pattern up front. Now, I would be more judicious: if a Pattern could solve a design
problem, if it could provide a way to implement a requirement, I would use it, but I
would begin with the simplest implementation of the Pattern that I could code. Later,
when enhancements or modifications were required, I would make the implementations
more flexible or robust.

This new way of working with Patterns was much better: It saved me time and made my
designs simpler.

As I continued to learn more about XP, I soon began to consider the fact that those who
were articulating what XP is, and how it works, weren’t saying anything about Patterns.
The focus on the development side seemed to have shifted exclusively to Refactoring.
Build a little, test a little, refactor a little, and repeat.

Well, what happened to Patterns?

The common answer I received was that Patterns encourage over-engineering, while
Refactoring keeps things simple and light.

Now, I like Refactoring about as well as anyone – I reviewed two manuscripts of Martin
Fowler’s book on the subject and knew that it was destined to become a classic. But I
also like Patterns and have found them to be invaluable in helping people learn how to
design better software. So how could XP not include Patterns?!

I wrote about my unease with respect to this issue on the Portland Pattern Repository. I
asked if the perfect XP team would consist of programmers and a coach who know
nothing about Patterns, but who rely solely on Refactoring to “let the code go where it
needs to go.” Ron Jeffries, who is arguably the world’s most experienced XP
practitioner, debated this subject with me and wrote:

A beginner can't listen to the code and hear what it says. He needs to learn
patterns (in the generic sense) of code quality. He needs to see good
code (and, I suppose, bad) in order to learn to make good code.

A question, and I mean it to be a question, is whether patterns as presently
constituted help with this. I think Beck's Smalltalk Best Practice Patterns
do help, because they are very micro. I think Design Patterns are more
iffy, as the patterns and discussion get pretty big sometimes, and they may
make big solutions seem desirable. Martin Fowler's excellent Analysis

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 5 of 13

Patterns offer the same peril, the selection of a big solution when a small
one would do. [Jeffries 99]

A very interesting perspective on Patterns. While I’ve come to see that Patterns can be
implemented and used judiciously, Ron seems to think that they are dangerous because
they “make big solutions seem desirable.” Elsewhere, Ron observes the common
occurrence of how people who first learn Patterns are over-anxious to use them.

I can’t argue with the latter observation. Like anything new, even XP practices, people
can be over-anxious to use them. But do patterns really encourage big solutions when
small ones would do?

I think a lot depends on how you define and use Patterns. For instance, I have observed
that many beginning Patterns users think that a Pattern is the same as its structure
diagram (or Class diagram). Yet when I point out to them that the Pattern can really be
implemented in different ways, depending on needs, they begin to see that the diagram
shows just one of many ways to implement the Pattern.

There are simple implementations of a pattern, and sophisticated implementations. The
trick is to discover the problem that a pattern addresses, match that problem to you
current problem, and then match the simplest pattern implementation (solution) to your
problem. When you do that, you aren’t using big solutions when small ones would do.
You’re leveraging best practices to solve your problems.

Difficulties can arise when people aren’t well educated about Patterns. Ron mentioned
the way that Patterns are “presently constituted”—that is to say, how they are
communicated by authors today. I would agree that the Patterns literature has some flaws.
The books on Patterns are dense, and it can take time to understand the problems that
Patterns solve so that you can intelligently match a Pattern to your particular needs.

This matching is extremely important. If you get it wrong, you could be over-engineering
or just screwing up your design altogether. Experienced Patterns users do make mistakes
and then often see the problems that result. But these experts are armed with a host of
other Patterns that can help them in the face of their mismatch. So they often end up
swapping out a less-than-ideal Pattern for one that better suits their needs.

So how do you become an experienced Patterns user? I have found that unless people
devote significant study to Patterns, they will be in danger of misunderstanding them,
over-using them and over-engineering with them.

But is that a reason to avoid them?

I think not. I’ve found them to be so useful, on so many projects, that I couldn’t imagine
designing and developing software without them. I believe that a thorough study of
Patterns is well worth the effort.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 6 of 13

So is XP keeping silent about Patterns because the feeling is that they’ll be misused?

If that is the case, perhaps the question becomes how can we leverage the wisdom in
Patterns, while avoiding the misuse of Patterns within the context of XP development?

Here, I think we must return to the Design Patterns Book. In the concluding remarks
under the section “What to Expect From Design Patterns” and the sub-section, “A Target
for Refactoring”, the authors write:

Our design patterns capture many of the structures that result from
refactoring. Using these patterns early in the life of a design prevents later
refactorings. But even if you don’t see how to apply a pattern until after
you’ve built your system, the pattern can still show you how to change it.
Design patterns thus provide targets for your refactorings. [GHJV2 95]

This is the idea we need: Targets for your Refactorings. This is the bridge between
Refactoring and Patterns. It perfectly describe my own evolution in how I’ve come to use
Patterns: start simple, think about Patterns but keep them on the back-burner, make small
refactorings, and move these refactorings towards a Pattern (or Patterns) only when there
is a genuine need for them.

This process, which requires discipline and careful judgement, would fit nicely into the
XP fold of best practices.

And this approach is certainly quite different from intentionally not knowing about or
using Patterns but simply relying on Refactoring to incrementally improve a design.

The danger of relying exclusively on Refactoring is this: without targets, people may
make small design improvements, but their overall design will ultimately suffer because
it lacks the order, simplicity, and effectiveness that come from intelligently using
Patterns.

To quote Kent Beck himself: Patterns Generate Architectures [Beck2 94].

But Patterns don’t ensure disciplined usage. If we use them too much or too soon in a
design, we’re back to the over-engineering problem. We must therefore answer the
question, “When is it safe to introduce Patterns into the life cycle of a design?” Recall
the quote from the Design Patterns book above:

Using these patterns early in the life of a design prevents later refactorings.

This is a tricky proposition. If we don’t know the ground rules for when to deploy a
Pattern, then we can easily over-engineer early in the design lifecycle.

Again, it all comes down to matching a project’s problems to the correct Patterns.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 7 of 13

I must here recount certain experiences I’ve had developing software for various
industries.

For one client, my team and I were asked to create software in Java that would be the
cool, interactive version of their Web site. The client did not have any Java
programmers, but nevertheless wanted this software to be written in such a way that they
could modify its behavior wherever and whenever they wanted, without having to make
programming changes. A tall order!

After some analysis of their needs, it became clear that the Command pattern would play
an essential role in the design. We would write Command objects, and let these
Commands control the entire behavior of the software. The users would be empowered
to parameterize the Commands, order them, and choose where and when they would run.

This solution worked perfectly, and the Command pattern was the key to our success. So
here we didn’t wait to Refactor our way to using the Command Pattern. Instead, we saw
a need up front, and programmed the software using Command from the start.

On another project, a system was required to run as a stand-alone application and on the
Web. The Builder pattern played a huge role in this system. Without it, I shudder to think
what sort of bloated design would been cobbled together. The Builder Pattern simply
lives for solving problems like how to run on different platforms or in different
environments. It was therefore a good early choice of a Pattern.

At this point, I must make it clear that even though Patterns were introduced early in the
design lifecycle, they were still implemented in their most primitive forms to start. Only
later, when additional functionality was required, were these implementations either
altered or upgraded.

An example will make this clear.

The above-mentioned software that was controlled exclusively via Commands was
implemented with multi-threaded code. There were times when two threads might be
using the same MacroCommand to run a sequence of Commands. But we had not
originally bothered to make our MacroCommand thread-safe. So when we started to
encounter weird bugs because of this, we had to reconsider our implementation. The
question was, would it make sense to invest time to make our MacroCommand thread
safe or was there an easier way to solve the problem?

It turned out that the easier way to solve the problem, and avoid over-engineering, was to
simply have two separate instances of MacroCommand used by each thread. We were
able to implement that solution in 30 seconds. Compare that to the time it would have
taken to implement a thread-safe MacroCommand.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 8 of 13

This example shows how the XP philosophy of keeping things simple has such an affect
on how Patterns are programmed and used. Without the drive towards simplicity, over-
engineered solutions, like the thread-safe MacroCommand, can easily proliferate.

So the relationship between simplicity and Patterns is important.

When programmers need to make design decisions, it’s important that they try to keep
their designs simple, since simple designs are usually far easier to maintain and extend
than large, complex designs. We already know that Refactoring is meant to keep us on
the simple path: It encourages us to take small, simple steps, to improve our designs
incrementally, and to avoid over-engineering.

But what about Patterns? Do they help us stay simple?

Some would argue that they don’t. They think that Patterns, while useful, tend to
complicate designs. They see Patterns as causing a proliferation of objects and an over
reliance on object composition.

This perspective is really the result of a naïve understanding of how to successfully use
Patterns. Once again, experience equips a Patterns user to avoid complicated designs,
proliferations of objects, and too much object composition.

Experienced users of Patterns actually make their designs simpler when they use Patterns.
Again, I’ll go to a real example to make my point clear.

JUnit is the simple, useful, Java testing framework, written by Kent Beck and Erich
Gamma. It is an excellent piece of software, dense with well-selected and simply
implemented Patterns.

As an experiment, I recently asked some folks to DeGoF JUnit; that is, to remove the
Design Patterns from JUnit to see what it would look like without them. This was a very
interesting exercise, since it made the participants think really hard about when it is
appropriate to introduce a Pattern into a system.

To illustrate a lesson they learned, we will DeGoF a few extensions that were added to
JUnit in version 2.1.

JUnit has an abstract class called TestCase, from which all concrete test classes descend.
TestCase provides no way to run a test multiple times, nor does it provide a way to run a
test within its own thread. Erich and Kent implemented repeatable tests and thread-based
tests quite elegantly using the Decorator Pattern. But what if a team or a pair of
programmers didn’t know Decorator? Let’s see what they might develop and assess how
simple it would be.

Here’s what Test Case looked like in version 1.0 of the JUnit framework (comments and
numerous methods omitted for brevity):

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 9 of 13

public abstract class TestCase implements Test {
private String fName;

public TestCase(String name) {
fName= name;

}

public void run(TestResult result) {
result.startTest(this);
setUp();

try {
runTest();

}
catch (AssertionFailedError e) {

result.addFailure(this, e);
}
catch (Throwable e) {

result.addError(this, e);
}

tearDown();
result.endTest(this);

}

public TestResult run() {
TestResult result= defaultResult();
run(result);
return result;

}

protected void runTest() throws Throwable {
 Method runMethod= null;
 try {
 runMethod= getClass().getMethod(fName, new Class[0]);
 } catch (NoSuchMethodException e) {

e.fillInStackTrace();
 throw e;
 }

 try {
 runMethod.invoke(this, new Class[0]);
 }
 catch (InvocationTargetException e) {

e.fillInStackTrace();
 throw e.getTargetException();
 }
 catch (IllegalAccessException e) {

e.fillInStackTrace();
 throw e;
 }
}

public int countTestCases() {
return 1;

}
}

The new requirements call for allowing tests to run repeatedly, in their own threads, or
both.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 10 of 13

Inexperienced programmers usually sub-class when they get new requirements like this.
But here, since they know that some TestCases will need to be able to run repeatedly in a
thread or repeatedly run TestCases in separate threads, the programmers know that they
need to give this some more thought.

One way to implement this would be to just add all the functionality to the TestCase class
itself. Many developers, especially those who don’t know Patterns, would do this without
worrying about the negative effects of bloating their classes. They have to add
functionality, so they’ll add it where they can. The following code might be their
implementation:

public abstract class TestCase implements Test {
 private String fName;

private int fRepeatTimes;

public TestCase(String name) {
this(name, 0);

}

public TestCase(String name, int repeatTimes) {
fName = name;
fRepeatTimes = repeatTimes;

}

public void run(TestResult result) {
for (int i=0; i < fRepeatTimes; i++) {

result.startTest(this);
setUp();

try {
runTest();

}
catch (AssertionFailedError e) {

result.addFailure(this, e);
}
catch (Throwable e) {

result.addError(this, e);
}

tearDown();
result.endTest(this);

}
}

public int countTestCases() {
return fRepeatTimes;

}
}

Notice how the run(TestResult result) method is a little bigger. They’ve also added
another constructor on TestCase. No big deal so far. And here we could say that if this
was all they had to do, using Decorator would be overkill.

Now, how about running a TestCase in its own thread? Again, here is another possible
implementation:

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 11 of 13

public abstract class TestCase implements Test {
 private String fName;

private int fRepeatTimes;
private boolean fThreaded;

public TestCase(String name) {
this(name, 0, false);

}

public TestCase(String name, int repeatTimes) {
this(name, repeatTimes, false);

}

public TestCase(String name, int repeatTimes, boolean threaded) {
fName = name;
fRepeatTimes = repeatTimes;
fThreaded = threaded;

}

public void run(TestResult result) {
if (fThreaded) {

final TestResult finalResult= result;
final Test thisTest = this;
Thread t= new Thread() {

public void run() {
for (int i=0; i < fRepeatTimes; i++) {

finalResult.startTest(thisTest);
setUp();

try {
runTest();

}
catch (AssertionFailedError e) {
 finalResult.addFailure(thisTest, e);
}
catch (Throwable e) {
 finalResult.addError(thisTest, e);
}

tearDown();
finalResult.endTest(thisTest);

}
}

};
t.start();
result = finalResult;

} else {
for (int i=0; i < fRepeatTimes; i++) {

result.startTest(this);
setUp();

try {
runTest();

}
catch (AssertionFailedError e) {

result.addFailure(this, e);
}
catch (Throwable e) {

result.addError(this, e);
}

tearDown();
result.endTest(this);

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 12 of 13

}
}

}

public int countTestCases() {
return fRepeatTimes;

}
}

Hmm, this is starting to look pretty bad. We now have three constructors to support these
two new features, and the run(TestResult result) method has mushroomed in size.

Despite all the new code, our programmers have still not met the requirements: we still
can’t run repeated tests that each execute in their own thread. We’d have to add more
code for that. I’ll spare you.

Refactoring could help this code a little. But consider for a moment what we’d have if
just one more requirement comes in. JUnit 3.1 now supports four different TestCase
Decorators, which can be easily combined to get the functionality you need. And yet the
JUnit implementation is simple–it doesn’t create cluttered code. It keeps the TestCase
class simple and lightweight by decorating TestCases only when needed, and in whatever
order or combinations a user likes.

This is clearly an example of how Patterns help to keep designs simple. It also shows
how inexperienced developers can improve their designs by knowing which Patterns to
target during Refactorings.

Using Patterns to develop software is intelligent, but if you lack experience with Patterns,
it can also be dangerous. For this reason, I am a great advocate of Patterns Study Groups.
Such groups allow people to become proficient with Patterns at a steady pace with the
help of their peers.

Patterns are most useful when people know them and use them in a disciplined way: The
XP way. Using Patterns the XP way encourages developers to keep designs simple and
Refactor to Patterns solely based on need. It encourages the use of Patterns early in a
design when they are critical. It encourages the correct matching of problems with
Patterns that help solve them. And finally, it encourages developers to write simple
implementations of Patterns, which they may evolve as needed.

Patterns are indeed more useful in the context of XP, and XP development is more likely
to succeed when it includes the use of Patterns.

Patterns & XP 01/30/00

© 2000, Joshua Kerievsky, Industrial Logic, Inc. 13 of 13

References

[Beck1 00] Beck, Kent. Email on extremeprogramming@egroups.com, January 2000.

[Beck2 94] Patterns Generate Architectures, Kent Beck and Ralph Johnson, ECOOP 94

[GHJV1 95] Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.

 [GHJV2 95] Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Pages 353-
354

[Jeffries 99] Jeffries, Ron. Patterns And Extreme Programming. Portland Pattern Repository.
December, 1999

[Kerth 99] Kerth, Norm. Conversation, circa March, 1999.

[Kerievsky 96] Kerievsky, Joshua. Don’t Distinguish Between Classes And Interfaces.
Portland Pattern Repository. Circa 1996

