

Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

The Extreme Programming Playbook

Every team on every playing field of software development moves and competes within
the boundaries of a written or unwritten playbook. Below are the extreme plays in the
playbooks of extreme software teams.

Small Releases

Simple Design

Testing Planning Game

On-Site
Customer

Collective
Ownership

Refactoring Continuous
Integration

Metaphor Pair
Programming

Coding
Standard

40-Hour Week

The first play, upon which all the others depend, is Small Releases. The software team
makes continuous forward motion by producing an embryonic version of a system,
releasing it for immediate customer feedback, adding crucial functionality with every
new release and continuously learning from feedback.

Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

To maximize forward motion, every play has a Simple Design, allowing a team to do the
most with the least amount of effort. Simplicity permeates every action: the design of the
user interface, the programming of the business algorithms, the smallest sections of code.

A team successfully executes Small Releases and Simple Design with seven coordinated
plays: The Planning Game, Testing, On-Site Customer, Collective Code Ownership,
Refactoring, Metaphor and 40-Hour Week.

The Planning Game provides short, focused game plans, which the team executes at
regular intervals. A relentless focus on Testing helps the team satisfy each of the game
plan’s stated goals. The On-Site Customer helps The Planning Game and Testing go
according to plan. Collective Code Ownership places team play over individual play for
superior performance. Refactoring is the merciless drive towards simplicity, clear
communication and the removal of obstacles. Metaphor, one of the hardest plays in the
book, provides insight into and new development of patterns of play. The 40-Hour Week
keeps players strong and on balance during the game.

Some of these extreme plays cannot be executed effectively without a coordinated
coupling between defensive and offensive plays. Consider the following play:

New
Bugs

New
Bugs

Difficult
Integrations

Refactoring

Poorly Written
Code

Poorly Designed
Code

A team can’t successfully charge ahead with Refactoring without the defensive support of
Testing and Continuous Integration or the offensive freedom provided by Collective
Code Ownership:

Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

New
Bugs

New
Bugs

Difficult
Integrations

Refactoring

Poorly Written
Code

Testing

Continuous
Integration

Poorly Designed
Code

Collective Code
Ownership

Merciless refactoring has the potential to maximize a team’s efficiency but it can also
cause unwanted clashes between fellow team players. To minimize clashes, players
Continuously Integrate their maneuvers with the team’s latest position. Yet even this
defensive play can fail if player performance is poor: a rookie can make serious blunders,
a veteran can have a bad day. Extreme teams don’t compensate for poor solo play, they
elevate the game of all players by coupling them together. A veteran pairs with a rookie,
a seasoned veteran teams up with an up-and-coming player, two rookies pair together and
all players rotate pairs continuously. In this way, mastery of the game spreads, as pairs,
not solo players, share the glory of testing, designing, analyzing, programming,
refactoring and continuously integrating their contributions. To ensure that each pair is
fully engaged on the playing field, everyone follows the 40-Hour Week rule.

Both Pair Programming and Refactoring help make a Coding Standard possible. This
standard brings a consistent style of play to the game.

Refactoring also helps a team move towards an ever-elusive Metaphor. While teams
rarely know their metaphor early in a game, they can discover one over time, sometimes
with the help of Refactoring.

Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

There are many ways to explain the network of plays in the Extreme Programming
Playbook. This has been an introduction to those plays. For more information, please
see Kent Beck’s book, Extreme Programming Explained.

